Reduction of polymer residue on wet–transferred CVD graphene surface by deep UV exposure
نویسندگان
چکیده
منابع مشابه
Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer.
One of the most significant issues that occurs when applying chemical-vapor deposited (CVD) graphene (Gr) to various high-performance device applications is the result of polymeric residues. Polymeric residues remain on the Gr surface during Gr polymer support transfer to an arbitrary substrate, and these residues degrade CVD Gr electrical properties. In this paper, we propose that a thin layer...
متن کاملDoping stability and opto-electronic performance of CVD graphene on transparent flexible substrates
The primary barrier to wider commercial adoption of graphene lies in reducing the sheet resistance of the transferred material without compromising its high broad-band optical transparency, ideally through the use of novel transfer techniques and doping strategies. Here, chemical vapour deposited graphene was uniformly transferred to polymer supports by thermal and UV approaches and the time-de...
متن کاملSynthesis of Graphene Based Membranes: Effect of Substrate Surface Properties on Monolayer Graphene Transfer
In this work, we report the transfer of graphene onto eight commercial microfiltration substrates having different pore sizes and surface characteristics. Monolayer graphene grown on copper by the chemical vapor deposition (CVD) process was transferred by the pressing method over the target substrates, followed by wet etching of copper to obtain monolayer graphene/polymer membranes. Scanning el...
متن کاملDry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
We report a dry transfer method that can tranfer chemical vapor deposition (CVD) grown graphene onto liquid-sensitive surfaces. The graphene grown on copper (Cu) foil substrate was first transferred onto a freestanding 4 μm thick sputtered Cu film using the conventional wet transfer process, followed by a dry transfer process onto the target surface using a polydimethylsiloxane stamp. The dry-t...
متن کاملThe Growth of Multilayer Graphene over MCM-41 by CVD Method in Atmospheric Pressure: metal–Free Nanocatalyst
Graphene films were fabricated over synthesized MCM-41 nanocatalyst by chemical vapordeposition method, and the reaction was carried in atmospheric pressure at 750˚C. Acetylenegas used as a carbon precursor and the synthesis reaction took place in hydrogen atmosphere.Mesoporous MCM-41 was synthesized at room temperature, using wet chemical method. Thesynthesized metal free catalyst was characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017